Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.189
Filtrar
1.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605012

RESUMO

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Assuntos
Osteogênese , Tecidos Suporte , Osteogênese/fisiologia , Tecidos Suporte/química , Porosidade , Impressão Tridimensional , Zinco/farmacologia
2.
J Neural Eng ; 21(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572924

RESUMO

Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.


Assuntos
Matriz Extracelular , Nervo Isquiático , Animais , Masculino , Camundongos , Ratos , Regeneração Nervosa/fisiologia , Poliésteres/química , Ratos Wistar , Nervo Isquiático/fisiologia , Eletricidade Estática , Suínos , Tecidos Suporte/química
3.
J Biomech Eng ; 146(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557592

RESUMO

Development of respiratory tissue constructs is challenging due to the complex structure of native respiratory tissue and the unique biomechanical conditions induced by breathing. While studies have shown that the inclusion of biomechanical stimulus mimicking physiological conditions greatly benefits the development of engineered tissues, to our knowledge no studies investigating the influence of biomechanical stimulus on the development of respiratory tissue models produced through three-dimensional (3D) bioprinting have been reported. This paper presents a study on the utilization of a novel breath-mimicking ventilated incubator to impart biomechanical stimulus during the culture of 3D respiratory bioprinted constructs. Constructs were bioprinted using an alginate/collagen hydrogel containing human primary pulmonary fibroblasts with further seeding of human primary bronchial epithelial cells. Biomechanical stimulus was then applied via a novel ventilated incubator capable of mimicking the pressure and airflow conditions of multiple breathing conditions: standard incubation, shallow breathing, normal breathing, and heavy breathing, over a two-week time period. At time points between 1 and 14 days, constructs were characterized in terms of mechanical properties, cell proliferation, and morphology. The results illustrated that incubation conditions mimicking normal and heavy breathing led to greater and more continuous cell proliferation and further indicated a more physiologically relevant respiratory tissue model.


Assuntos
Bioimpressão , Tecidos Suporte , Humanos , Tecidos Suporte/química , Engenharia Tecidual/métodos , Hidrogéis/química , Respiração , Impressão Tridimensional , Bioimpressão/métodos
4.
Biofabrication ; 16(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38565131

RESUMO

Extrusion-based bioprinting is a promising technology for the fabrication of complex three-dimensional (3D) tissue-engineered constructs. To further improve the printing accuracy and provide mechanical support during the printing process, hydrogel-based support bath materials have been developed. However, the gel structure of some support bath materials can be compromised when exposed to certain bioink crosslinking cues, hence their compatibility with bioinks can be limited. In this study, a xanthan gum-based composite support material compatible with multiple crosslinking mechanisms is developed. Different support bath materials can have different underlying polymeric structures, for example, particulate suspensions and polymer solution with varying supramolecular structure) and these properties are governed by a variety of different intermolecular interactions. However, common rheological behavior can be expected because they have similar demonstrated performance and functionality. To provide a detailed exploration/identification of the common rheological properties expressed by different support bath materials from a unified perspective, benchmark support bath materials from previous studies were prepared. A comparative rheological study revealed both the structural and shear behavior characteristics shared by support bath materials, including yield stress, gel complex moduli, shear-thinning behavior, and self-healing properties. Gel structural stability and functionality of support materials were tested in the presence of various crosslinking stimuli, confirming the versatility of the xanthan-based support material. We further investigated the effect of support materials and the diameter of extrusion needles on the printability of bioinks to demonstrate the improvement in bioink printability and structural integrity. Cytotoxicity and cell encapsulation viability tests were carried out to confirm the cell compatibility of the xanthan gum-based support bath material. We propose and demonstrate the versatility and compatibility of the novel support bath material and provide detailed new insight into the essential properties and behavior of these materials that serve as a guide for further development of support bath-based 3D bioprinting.


Assuntos
Bioimpressão , Engenharia Tecidual , Polissacarídeos Bacterianos , Reologia , Impressão Tridimensional , Bioimpressão/métodos , Hidrogéis/química , Tecidos Suporte/química
5.
Biofabrication ; 16(3)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38569492

RESUMO

Tissue engineering has emerged as an advanced strategy to regenerate various tissues using different raw materials, and thus it is desired to develop more approaches to fabricate tissue engineering scaffolds to fit specific yet very useful raw materials such as biodegradable aliphatic polyester like poly (lactide-co-glycolide) (PLGA). Herein, a technique of 'wet 3D printing' was developed based on a pneumatic extrusion three-dimensional (3D) printer after we introduced a solidification bath into a 3D printing system to fabricate porous scaffolds. The room-temperature deposition modeling of polymeric solutions enabled by our wet 3D printing method is particularly meaningful for aliphatic polyester, which otherwise degrades at high temperature in classic fuse deposition modeling. As demonstration, we fabricated a bilayered porous scaffold consisted of PLGA and its mixture with hydroxyapatite for regeneration of articular cartilage and subchondral bone. Long-termin vitroandin vivodegradation tests of the scaffolds were carried out up to 36 weeks, which support the three-stage degradation process of the polyester porous scaffold and suggest faster degradationin vivothanin vitro. Animal experiments in a rabbit model of articular cartilage injury were conducted. The efficacy of the scaffolds in cartilage regeneration was verified through histological analysis, micro-computed tomography (CT) and biomechanical tests, and the influence of scaffold structures (bilayerversussingle layer) onin vivotissue regeneration was examined. This study has illustrated that the wet 3D printing is an alternative approach to biofabricate tissue engineering porous scaffolds based on biodegradable polymers.


Assuntos
Cartilagem Articular , Animais , Coelhos , Porosidade , Microtomografia por Raio-X , Temperatura , Tecidos Suporte/química , Engenharia Tecidual/métodos , Polímeros , Poliésteres , Impressão Tridimensional
6.
ACS Appl Mater Interfaces ; 16(15): 18522-18533, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564436

RESUMO

The creation of large, volumetric tissue-engineered constructs has long been hindered due to the lack of effective vascularization strategies. Recently, 3D printing has emerged as a viable approach to creating vascular structures; however, its application is limited. Here, we present a simple and controllable technique to produce porous, free-standing, perfusable tubular networks from sacrificial templates of polyelectrolyte complex and coatings of salt-containing citrate-based elastomer poly(1,8-octanediol-co-citrate) (POC). As demonstrated, fully perfusable and interconnected POC tubular networks with channel diameters ranging from 100 to 400 µm were created. Incorporating NaCl particulates into the POC coating enabled the formation of micropores (∼19 µm in diameter) in the tubular wall upon particulate leaching to increase the cross-wall fluid transport. Casting and cross-linking gelatin methacrylate (GelMA) suspended with human osteoblasts over the free-standing porous POC tubular networks led to the fabrication of 3D cell-encapsulated constructs. Compared to the constructs without POC tubular networks, those with either solid or porous wall tubular networks exhibited a significant increase in cell viability and proliferation along with healthy cell morphology, particularly those with porous networks. Taken together, the sacrificial template-assisted approach is effective to fabricate tubular networks with controllable channel diameter and patency, which can be easily incorporated into cell-encapsulated hydrogels or used as tissue-engineering scaffolds to improve cell viability.


Assuntos
Hidrogéis , Tecidos Suporte , Humanos , Hidrogéis/química , Sobrevivência Celular , Porosidade , Tecidos Suporte/química , Engenharia Tecidual/métodos , Impressão Tridimensional , Gelatina/química
7.
ACS Appl Mater Interfaces ; 16(15): 18658-18670, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587811

RESUMO

Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.


Assuntos
Osteogênese , Tecidos Suporte , Camundongos , Animais , Coelhos , Tecidos Suporte/química , Biomimética , Regeneração Óssea , Poliésteres/química , Engenharia Tecidual , Impressão Tridimensional
8.
ACS Appl Mater Interfaces ; 16(15): 18386-18399, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591243

RESUMO

Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.


Assuntos
Criogéis , Impressão Tridimensional , Humanos , Criogéis/química , Anisotropia , Adipócitos , Engenharia Tecidual/métodos , Tecidos Suporte/química
9.
Int J Nanomedicine ; 19: 3275-3293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601348

RESUMO

Purpose: This study aims to explore a novel scaffold for osteotendinous junction regeneration and to preliminarily verify its osteogenic and tenogenic abilities in vitro. Methods: A polycaprolactone (PCL) scaffold with aligned and orthogonal fibers was created using melt electrowriting (MEW) and fused deposition modeling (FDM). The scaffold was coated with Type I collagen, and hydroxyapatite was carefully added to separate the regions intended for bone and tendon regeneration, before being rolled into a cylindrical shape. Human adipose-derived stem cells (hADSCs) were seeded to evaluate viability and differentiation. Scaffold characterization was performed with Scanning Electron Microscope (SEM). Osteogenesis was assessed by alkaline phosphatase (ALP) and Alizarin red staining, while immunostaining and transcription-quantitative polymerase chain reaction (RT-qPCR) evaluated osteogenic and tendogenic markers. Results: Scaffolds were developed in four variations: aligned (A), collagen-coated aligned (A+C), orthogonal (O), and mineral-coated orthogonal (O+M). SEM analysis confirmed surface morphology and energy-dispersive X-ray spectroscopy (EDS) verified mineral coating on O+M types. Hydrophilicity and mechanical properties were optimized in modified scaffolds, with A+C showing increased tensile strength and O+M improved in compression. hADSCs demonstrated good viability and morphology across scaffolds, withO+M scaffolds showing higher cell proliferation and osteogenic potential, and A and A+C scaffolds supporting tenogenic differentiation. Conclusion: This study confirms the potential of a novel PCL scaffold with distinct regions for osteogenic and tenogenic differentiation, supporting the regeneration of osteotendinous junctions in vitro.


Assuntos
Biomimética , Tecidos Suporte , Humanos , Tecidos Suporte/química , Osteogênese , Poliésteres/química , Durapatita/farmacologia , Durapatita/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Diferenciação Celular , Regeneração Óssea
10.
ACS Appl Bio Mater ; 7(4): 2569-2581, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570335

RESUMO

Chronic wounds impose a significant burden on individuals and healthcare systems, necessitating the development of advanced wound management strategies. Tissue engineering, with its ability to create scaffolds that mimic native tissue structures and promote cellular responses, offers a promising approach. Electrospinning, a widely used technique, can fabricate nanofibrous scaffolds for tissue regeneration. In this study, we developed patterned nanofibrous scaffolds using a blend of poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS), known for their biocompatibility and biodegradability. By employing a mesh collector, we achieved a unique fiber orientation pattern that emulated the natural tissue architecture. The average fiber diameter of PGS/PCL collected on aluminum foil and on mesh was found to be 665.2 ± 4 and 404.8 ± 16 nm, respectively. To enhance the scaffolds' bioactivity and surface properties, it was coated with hyaluronic acid (HA), a key component of the extracellular matrix known for its wound-healing properties. The HA coating improved the scaffold hydrophilicity and surface wettability, facilitating cell attachment, spreading, and migration. Furthermore, the HA-coated scaffold exhibited enhanced biocompatibility, promoting cell viability and proliferation. High-throughput RNA sequencing was performed to analyze the influence of the fabricated scaffold on the gene expression levels of endothelial cells. The top-upregulated biological processes and pathways include cell cycle regulation and cell proliferation. The results revealed significant alterations in gene expression profiles, indicating the scaffold's ability to modulate cellular functions and promote wound healing processes. The developed scaffold holds great promise for advanced wound management and tissue regeneration applications. By harnessing the advantages of aligned nanofibers, biocompatible polymers, and HA coating, this scaffold represents a potential solution for improving wound healing outcomes and improving the quality of life for individuals suffering from chronic wounds.


Assuntos
Nanofibras , Tecidos Suporte , Humanos , Tecidos Suporte/química , Nanofibras/química , Ácido Hialurônico/farmacologia , Poliésteres/farmacologia , Poliésteres/química , Células Endoteliais , Transcriptoma , Qualidade de Vida
11.
Biofabrication ; 16(3)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574552

RESUMO

The advent of 3D bioprinting technologies in tissue engineering has unlocked the potential to fabricatein vitrotissue models, overcoming the constraints associated with the shape limitations of preformed scaffolds. However, achieving an accurate mimicry of complex tissue microenvironments, encompassing cellular and biochemical components, and orchestrating their supramolecular assembly to form hierarchical structures while maintaining control over tissue formation, is crucial for gaining deeper insights into tissue repair and regeneration. Building upon our expertise in developing competent three-dimensional tissue equivalents (e.g. skin, gut, cervix), we established a two-step bottom-up approach involving the dynamic assembly of microtissue precursors (µTPs) to generate macroscopic functional tissue composed of cell-secreted extracellular matrix (ECM). To enhance precision and scalability, we integrated extrusion-based bioprinting technology into our established paradigm to automate, control and guide the coherent assembly ofµTPs into predefined shapes. Compared to cell-aggregated bioink, ourµTPs represent a functional unit where cells are embedded in their specific ECM.µTPs were derived from human dermal fibroblasts dynamically seeded onto gelatin-based microbeads. After 9 days,µTPs were suspended (50% v/v) in Pluronic-F127 (30% w/v) (µTP:P30), and the obtained formulation was loaded as bioink into the syringe of the Dr.INVIVO-4D6 extrusion based bioprinter.µTP:P30 bioink showed shear-thinning behavior and temperature-dependent viscosity (gel atT> 30 °C), ensuringµTPs homogenous dispersion within the gel and optimal printability. The bioprinting involved extruding several geometries (line, circle, and square) into Pluronic-F127 (40% w/v) (P40) support bath, leveraging its shear-recovery property. P40 effectively held the bioink throughout and after the bioprinting procedure, untilµTPs fused into a continuous connective tissue.µTPs fusion dynamics was studied over 8 days of culture, while the resulting endogenous construct underwent 28 days culture. Histological, immunofluorescence analysis, and second harmonic generation reconstruction revealed an increase in endogenous collagen and fibronectin production within the bioprinted construct, closely resembling the composition of the native connective tissues.


Assuntos
Bioimpressão , Polietilenos , Polipropilenos , Tecidos Suporte , Humanos , Tecidos Suporte/química , Bioimpressão/métodos , Poloxâmero , Uridina Trifosfato , Engenharia Tecidual/métodos , Impressão Tridimensional
12.
BMC Oral Health ; 24(1): 413, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575940

RESUMO

BACKGROUND: Tissue engineering has attracted recent attention as a promising bone repair and reconstruction approach. Dental pulp stem cells (DPSCs) are pluripotent and can differentiate into bone cells with the correct environment and substrate. Therefore, suitable scaffold materials are essential for fabricating functional three-dimensional (3D) tissue and tissue regeneration. Composite scaffolds consisting of biodegradable polymers are very promising constructs. This study aims to verify the biological function of human DPSCs seeded onto composite scaffolds based on graphene oxide (GO) and poly-L-lactic acid (PLLA). METHODS: The surface morphology was observed under scanning electron microscopy (SEM). Chemical composition was evaluated with Fourier transform infrared (FTIR) spectroscopy. The biocompatibility of GO/PLLA scaffolds was assessed using phalloidin staining of cytoskeletal actin filaments, live/dead staining, and a CCK-8 assay. The effect of GO/PLLA scaffolds on cell osteogenic differentiation was detected through ALP staining, ALP activity assays, and alizarin red S staining, complemented by quantitative real-time PCR (qRT-PCR) analysis. RESULTS: Our data showed that GO and PLLA are successfully integrated and the GO/PLLA scaffolds exhibit favorable bioactivity and biocompatibility towards DPSCs. Additionally, it was observed that the 0.15% GO/PLLA scaffold group promoted DPSC proliferation and osteogenic differentiation by forming more calcium nodules, showing a higher intensity of ALP staining and ALP activity, and enhancing the expression levels of differentiation marker genes RUNX2 and COL1. CONCLUSIONS: These results demonstrate that the GO/PLLA scaffold is a feasible composite material suitable for cell culture and holds promising applications for oral bone tissue engineering.


Assuntos
Grafite , Osteogênese , Poliésteres , Tecidos Suporte , Humanos , Tecidos Suporte/química , Polpa Dentária , Diferenciação Celular , Células-Tronco , Proliferação de Células
13.
Sci Adv ; 10(10): eadk6610, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457502

RESUMO

Limited motor activity due to the loss of natural structure impedes recovery in patients suffering from tendon-to-bone injury. Conventional biomaterials focus on strengthening the regenerative ability of tendons/bones to restore natural structure. However, owing to ignoring the immune environment and lack of multi-tissue regenerative function, satisfactory outcomes remain elusive. Here, combined manganese silicate (MS) nanoparticles with tendon/bone-related cells, the immunomodulatory multicellular scaffolds were fabricated for integrated regeneration of tendon-to-bone. Notably, by integrating biomimetic cellular distribution and MS nanoparticles, the multicellular scaffolds exhibited diverse bioactivities. Moreover, MS nanoparticles enhanced the specific differentiation of multicellular scaffolds via regulating macrophages, which was mainly attributed to the secretion of PGE2 in macrophages induced by Mn ions. Furthermore, three animal results indicated that the scaffolds achieved immunomodulation, integrated regeneration, and function recovery at tendon-to-bone interfaces. Thus, the multicellular scaffolds based on inorganic biomaterials offer an innovative concept for immunomodulation and integrated regeneration of soft/hard tissue interfaces.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Animais , Humanos , Tecidos Suporte/química , Engenharia Tecidual/métodos , Tendões/fisiologia , Materiais Biocompatíveis , Regeneração Óssea
14.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542880

RESUMO

Recombinant human bone morphogenetic protein 2 (rhBMP-2) is an FDA-approved growth factor for bone regeneration and repair in medical practice. The therapeutic effects of rhBMP-2 may be enhanced through specific binding to extracellular matrix (ECM)-like scaffolds. Here, we report the selection of a novel rhBMP-2-specific DNA aptamer, functionalization of the aptamer in an ECM-like scaffold, and its application in a cellular context. A DNA aptamer BA1 was evolved and shown to have high affinity and specificity to rhBMP-2. A molecular docking model demonstrated that BA1 was probably bound to rhBMP-2 at its heparin-binding domain, as verified with experimental competitive binding assays. The BA1 aptamer was used to functionalize a type I collagen scaffold, and fraction ratios were optimized to mimic the natural ECM. Studies in the myoblast cell model C2C12 showed that the aptamer-enhanced scaffold could specifically augment the osteo-inductive function of rhBMP-2 in vitro. This aptamer-functionalized scaffold may have value in enhancing rhBMP-2-mediated bone regeneration.


Assuntos
Aptâmeros de Nucleotídeos , Proteína Morfogenética Óssea 2 , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Aptâmeros de Nucleotídeos/farmacologia , Tecidos Suporte/química , Simulação de Acoplamento Molecular , Regeneração Óssea , Fator de Crescimento Transformador beta/farmacologia , Proteínas Recombinantes/química
15.
Int J Biol Macromol ; 265(Pt 2): 130710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492701

RESUMO

Developing a polymer-based photocrosslinked 3D printable scaffolds comprised of gelatin methacryloyl (G) and hyaluronic acid methacryloyl (H) incorporated with two molecular weights of polyethylene glycol diacrylate (P) of various concentrations that enables rabbit adipose-derived stem cells (rADSCs) to survive, grow, and differentiate into smooth muscle cells (SMCs). Then, the chemical modification and physicochemical properties of the PGH bioinks were evaluated. The cell viability was assessed via MTT, CCK-8 assay and visualized employing Live/Dead assay. In addition, the morphology and nucleus count of differentiated SMCs were investigated by adopting TRAP (tartrate-resistant acid phosphatase) staining, and quantitative RT-PCR analysis was applied to detect gene expression using two different SMC-specific gene markers α-SMA and SM-MHC. The SMC-specific protein markers namely α-SMA and SM-MHC were applied to investigate SMC differentiation ability by implementing Immunocytofluorescence staining (ICC) and western blotting. Moreover, the disk, square, and tubular cellular models of PGH7 (GelMA/HAMA=2/1) + PEGDA-8000 Da, 3% w/v) hybrid bioink were printed using an extrusion bioprinting and cell viability of rADSCs was also analysed within 3D printed square construct practising Live/Dead assay. The results elicited the overall viability of SMCs, conserving its phenotype in biocompatible PGH7 hybrid bioink revealing its great potential to regenerate SMCs associated organs repair.


Assuntos
Hidrogéis , Tecidos Suporte , Animais , Coelhos , Tecidos Suporte/química , Hidrogéis/química , Gelatina/química , Músculo Liso , Fenótipo , Células-Tronco , Impressão Tridimensional , Engenharia Tecidual/métodos
16.
Int J Biol Macromol ; 265(Pt 2): 130938, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493814

RESUMO

The rapid manufacturing of biocomposite scaffold made of saturated-Poly(ε-caprolactone) (PCL) and unsaturated Polyester (PE) blends with gelatin and modified gelatin (NCO-Gel) is demonstrated. Polyester blend-based scaffold are fabricated with and without applying potential in the melt electrowriting system. Notably, the applied potential induces phase separation between PCL and PE and drives the formation of PE rich spots at the interface of electrowritten fibers. The objective of the current study is to control the phase separation between saturated and unsaturated polyesters occurring in the melt electro-writing process and utilization of this phenomenon to improve efficiency of biofunctionalization at the interface of scaffold via Aza-Michael addition reaction. Electron-deficient triple bonds of PE spots on the fibers exhibit good potential for the biofunctionalization via the aza-Michael addition reaction. PE spots are found to be pronounced in which blend compositions are PCL-PE as 90:10 and 75:25 %. The biofunctionalization of scaffold is monitored through CN bond formation appeared at 400 eV via X-ray photoelectron spectroscopy (XPS) and XPS chemical mapping. The described biofunctionalization methodology suggest avoiding use of multi-step chemical modification on additive manufacturing products and thereby rapid prototyping of functional polymer blend based scaffolds with enhanced biocompatibility and preserved mechanical properties. Additionally one-step additive manufacturing method eliminates side effects of toxic solvents and long modification steps during scaffold fabrication.


Assuntos
Poliésteres , Polímeros , Poliésteres/química , Tecidos Suporte/química , Gelatina/química , Engenharia Tecidual/métodos
17.
Int J Biol Macromol ; 265(Pt 2): 131120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527680

RESUMO

Chitin is the second most abundant biopolymer and its inherent biological characteristics make it ideal to use for tissue engineering. For many decades, its properties like non-toxicity, abundant availability, ease of modification, biodegradability, biocompatibility, and anti-microbial activity have made chitin an ideal biopolymer for drug delivery. Research studies have also shown many potential benefits of chitin in the formulation of functional therapy for cartilage regeneration. Chitin and its derivatives can be processed into 2D/3D scaffolds, hydrogels, films, exosomes, and nano-fibers, which make it a versatile and functional biopolymer in tissue engineering. Chitin is a biomimetic polymer that provides targeted delivery of mesenchymal stem cells, especially of chondrocytes at the injected donor sites to accelerate regeneration by enhancing cell proliferation and differentiation. Due to this property, chitin is considered an interesting polymer that has a high potential to provide targeted therapy in the regeneration of cartilage. Our paper presents an overview of the method of extraction, structure, properties, and functional role of this versatile biopolymer in tissue engineering, especially cartilage regeneration.


Assuntos
Cartilagem Articular , Tecidos Suporte , Tecidos Suporte/química , Quitina/farmacologia , Quitina/uso terapêutico , Cartilagem , Engenharia Tecidual/métodos , Hidrogéis/química , Polímeros
18.
Int J Biol Macromol ; 265(Pt 1): 130558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447850

RESUMO

In the field of bone tissue engineering, biomimetic scaffold utilization is deemed an immensely promising method. The bio-ceramic material Zirconia (ZrO2) has garnered significant attention in the biomimetic scaffolds realm due to its remarkable biocompatibility, superior mechanical strength, and exceptional chemical stability. Numerous examinations have been conducted to investigate the properties and functions of biomimetic structures built from zirconia. Generally, nano-ZrO2 materials have showcased encouraging applications in bone tissue engineering, providing a blend of mechanical robustness, bioactivity, drug delivery capabilities, and antibacterial properties. This review aims to concentrate on the properties and preparations of ZrO2 and its composite materials, while emphasizing its role along with other materials as scaffolds for bone tissue repair applications. The study also discusses the constraints of materials and technology involved in this domain. Ongoing research and development in this area are anticipated to further augment the potential of nano-ZrO2 for advancing bone regeneration therapies.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Engenharia Tecidual/métodos , Tecidos Suporte/química , Porosidade , Osso e Ossos , Zircônio/química
19.
Int J Biol Macromol ; 265(Pt 1): 130696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458288

RESUMO

There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.


Assuntos
Hidrogéis , Nanopartículas , Nitritos , Elementos de Transição , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Gelatina/química , Impressão Tridimensional , Glicosaminoglicanos , Músculo Esquelético , Tecidos Suporte/química , Engenharia Tecidual/métodos
20.
Biomater Sci ; 12(8): 2067-2085, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470831

RESUMO

The extracellular matrix (ECM) presents a framework for various biological cues and regulates homeostasis during both developing and mature stages of tissues. During development of cartilage, the ECM plays a critical role in endowing both biophysical and biochemical cues to the progenitor cells. Hence, designing microenvironments that recapitulate these biological cues as provided by the ECM during development may facilitate the engineering of cartilage tissue. In the present study, we fabricated an injectable interpenetrating hydrogel (IPN) system which serves as an artificial ECM and provides chondro-inductive niches for the differentiation of stem cells to chondrocytes. The hydrogel was designed to replicate the gradual stiffening (as a biophysical cue) and the presentation of growth factors (as a biochemical cue) as provided by the natural ECM of the tissue, thus exemplifying a biomimetic approach. This dynamic stiffening was achieved by incorporating silk fibroin, while the growth factor presentation was accomplished using sulfated-carboxymethyl cellulose. Silk fibroin and sulfated-carboxymethyl cellulose (s-CMC) were combined with tyraminated-carboxymethyl cellulose (t-CMC) and crosslinked using HRP/H2O2 to fabricate s-CMC/t-CMC/silk IPN hydrogels. Initially, the fabricated hydrogel imparted a soft microenvironment to promote chondrogenic differentiation, and with time it gradually stiffened to offer mechanical support to the joint. Additionally, the presence of s-CMC conferred the hydrogel with the property of sequestering cationic growth factors such as TGF-ß and allowing their prolonged presentation to the cells. More importantly, TGF-ß loaded in the developed hydrogel system remained active and induced chondrogenic differentiation of stem cells, resulting in the deposition of cartilage ECM components which was comparable to the hydrogels that were treated with TGF-ß provided through media. Overall, the developed hydrogel system acts as a reservoir of the necessary biological cues for cartilage regeneration and simultaneously provides mechanical support for load-bearing tissues such as cartilage.


Assuntos
Cartilagem Articular , Fibroínas , Engenharia Tecidual/métodos , Hidrogéis/química , Sulfatos , Carboximetilcelulose Sódica , Peróxido de Hidrogênio , Cartilagem , Seda , Fator de Crescimento Transformador beta , Tecidos Suporte/química , Condrogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...